Geological setting

In this study, the short radius, well-Q in Block-W of the Qinshui Basin is taken as an example. Based on the most recent exploration wells drilled in Block-W of Qinshui Basin, the geological horizons have been revealed. The strata in the block, from bottom to top, consist of Paleozoic Ordovician, Carboniferous, Permian, Mesozoic Triassic, Jurassic, and Cenozoic Quaternary. The stratum near Well-Q has a general inclination from northeast to northwest, and Coal Seam no.15 is the development target stratum. The coal seam is located in the lower part of the Taiyuan Formation and has a simple structure. It is a thick coal seam that is stable and easy to drill throughout the area and generally contains 0–2 layers of dirt shale. The effective thickness of the coal seam ranges from 0 to 5.30 m, with an average of 3.39 m. It is thicker in the east and thinner in the west. However, there is one exploration well in the block that did not drill into Coal Seam no.15, possibly due to fault interference resulting in the loss of the coal seam. The coal seam deposit depth ranges from 728 to 2002 m, with an average of 1479 m. The depth is shallow in the southeast of the block and gradually deepens towards the northwest. Due to the influence of the stratum tendency (Stratum dip), the depth of the coal seam reaches over 1500 m in the west14. The roof lithology of the coal seam mostly consists of sandy mudstone, mudstone, siltstone, and fine sandstone, while the floor is mostly sandy mudstone, mudstone, and siltstone.

Wellbore structure

Designing an optimized wellbore structure can greatly improve drilling efficiency and safety by reducing annular pressure loss and back pressure (the drilling tool back pressure phenomenon), especially for long well sections. In the case of Well-Q, the wellbore structure was designed with a three-opening sections to ensure gas production of the coal seam during subsequent fracturing development. The first section seals the formation prone to collapse and leakage in the upper part of the primary casing, creating a safe drilling environment for the second well section. The second section seals sandstone, mudstone, and sandy mudstone intervals at the upper part of the coal seam, with the second well section casing obliquely drilled to a depth of no less than 3 m from the target coal seam no.15.

The third section extends along coal seam no.15 and runs casing to form a stable gas production channel to prevent coal seam collapse in the horizontal section due to the influence of multiple factors such as fracturing in the later stage. Prior to drilling the second well section of the main borehole, pilot hole drilling was carried out to obtain relevant geological parameter information of the target coal seam and the adjacent marker bed. Specific design parameters and requirements are as follows:

  1. (1)

    In the first well section, a ø 346.1 mm drill bit was used to drill into the stable bedrock for 30 m. J55 grade steel ø 273.1 mm surface casing was then lowered and cementing cement slurry returned to the surface.

  2. (2)

    In the second well section, a ø 241.3 mm drill bit was used to drill to the roof of the target no.15 coal seam and then the drilling was stopped. The landing point was determined based on the lithology of the roof of the coal seam and the actual drilling process. N80 grade steel ø 193.7 mm technical casing was run to 3–5 m above the roof of the coal seam. Through variable density cementing process, high-density cement slurry was used to return to 300 m above the roof of Coal Seam no.15, while low-density cement slurry returned to the surface.

  3. (3)

    The third well section was drilled with a ø 171.5 mm drill bit. After entering the target coal seam no.15, the drilling followed the coal seam. Upon reaching the designed well depth, P110 grade steel ø 139.7 mm production casing was run, and the well was completed without cementing.

  4. (4)

    The pilot hole was drilled with a ø215.9 mm bit, and the inclination angle stabilizing drilling crossed the floor of the target coal seam for tens of meters. Subsequently, the bit was backfilled with pure cement slurry to the side drilling depth of the second well section. The specific wellbore structure is shown in Fig. 5.

Figure 5
figure 5

Case study: well-Q design optimization

Using Well-Q as a case study, the pilot hole trajectory design included the following: straight well section, kicking-off section, and stabilizing section. The stabilizing drilling passes through the floor of Coal Seam no.15 for approximately 30 m at an inclination angle of 70° to ensure accurate measurement of the gamma value, gas measurement value, and other characteristic parameters of the target coal seam bottom and floor using a simple gesturing instrument. The pilot hole is sealed by backfilling it with 42.5 grade Portland cement up to the well section with an inclination of about 25°, and the cement slurry has a specific gravity of 1.6–1.7 g/cm3. As the well deviation angle increases, the azimuth angle of directional and composite drilling becomes more stable, particularly when the well deviation angle exceeds 25°, resulting in a smaller azimuth drift29. This stability is beneficial for the subsequent inclined side-tracking in the main wellbore’s second well section. The pilot hole and main borehole design trajectories are shown in Fig. 6.

Figure 6
figure 6

Design trajectory of pilot hole and main hole.

Significant data has been obtained through the pilot hole design and the actual drilling of Well-Q. This dataset is pivotal for precise trajectory control in Coalbed Methane (CBM) exploration. The acquisition process relies on several methods, including real-time drilling natural gamma logging for gamma values of marker layers, and downhole gas logging for coal seam gas characteristics. The examination of cuttings recorded in real-time during drilling operations further aids in the identification and differentiation of these marker layers.

The critical information gleaned encompasses the identification of the K2 marker bed, the longitudinal stratification of the target no.15 coal seam, as well as the lithological composition, gamma values, and gas-bearing attributes of the upper and lower rock layers. These specific parameters are thoughtfully presented in Fig. 7, establishing a robust foundation for the meticulous control of trajectory and the rational design of the landing point within the target coal seam. This dataset also serves as a valuable point of reference, ensuring the seamless execution of the horizontal drilling phase within the coal seam. Consequently, these findings play a pivotal role in enhancing drilling efficiency, ultimately culminating in the realization of efficient drilling objectives.

Figure 7
figure 7

Characteristic parameters and lithology map of the marker layer, target, top, bottom layer.

The effect of two-dimensional resonance method

The horizontal section’s overall drilling azimuth in the target coal seam is 200°. To identify minor faults in the coal seam azimuth direction, measurement points are arranged every 10 m from the landing point A to the final target point B along the 200° azimuth direction. Additionally, one exploration point is set every 20 m across the azimuth line perpendicular to the landing point A and 200° azimuth direction. Furthermore, exploration points are arranged 300 m along both sides of the landing point. Figure 8 shows the specific layout of the exploration points, where Line (L1) represents the 711 m long horizontal well section of the target coal seam in the 200° azimuth direction. Meanwhile, Line (L2) represents the 600 m long vertical section between the landing point A and L1. The obtained data from these exploration points are crucial in detecting potential faults and ensuring smooth drilling of the horizontal section of the coal seam. ultimately leading to improved drilling ratios and more efficient drilling.

Figure 8
figure 8

Two-dimensional resonance exploration layout points.

Figure 9 shows the seismic frequency resonance inversion profile. The trajectory of the designed horizontal section coincides with the ground position of L1, with the no.4700 measuring point located at the ground projection position of the A target point, and the no.4000 measuring point located at the ground projection position of the B target point. Based on the interpretation of seismic frequency resonance line L1 profile, it is observed that the burial depth of the coal seam on the horizontal well section from target A to target B of the no.15 coal seam in the direction of 200° azimuth is shallow in the northeast and deep in the southwest. The overall trend of the burial depth of the coal seam indicates a shallow-to-deep trend. Furthermore, three small faults are expected to be encountered while drilling along this azimuth direction, located at no.4700, no.4280 and no.4096 measuring points, respectively, with a fault distance of approximately 5–10 m.

Figure 9
figure 9

Design of horizontal section trajectory resonance exploration inversion profile.

The contour map of fault points found in the horizontal section is displayed in Fig. 10. This map serves as a useful tool in guiding the vertical depth control of the horizontal section track.

Figure 10
figure 10

Contour map of fault points in the horizontal section.

To ensure that the drilling trajectory is within the target coal seam and to prevent any reduction in drilling ratio caused by the faults, it is necessary to optimize the well trajectory prior to drilling. Each fault point must be considered as a target point and their relative coordinate positions are presented in Table 3.

Table 3 Target and fault points spatial location coordinates.

Resonance exploration data is utilized to adjust the trajectory parameters every 10 to 20 m during the actual drilling process. This is before exploring the coal seam behind the fault following reasonable adjustment of the parameters. This method is simple and minimizes the length of the non-coal section during the coal chasing process after drilling through the fault. Based on the coordinate position of each target point, the design of the directional trajectory for the third well section is optimized, as shown in Fig. 11.

Figure 11
figure 11

optimized well trajectory for drilling reservoir section. (a) vertical section, (b) horizontal projection section.

The optimized design trajectory should be followed during actual drilling, ensuring that the dogleg degree ≤ 4°/30 m required by the management method for safe operations. Across the fault points F1, F2, and F3, the length of the non-coal section for coal tracking drilling was 56 m, 53 m, and 35 m, respectively. The total non-coal section for actual drilling was approximately 144 m, while achieving a drilling ratio of 80% for the target coal seam with an average thickness of 2.06 m. The entire drilling cycle takes approximately 45 days.

Azimuth gamma application

By analyzing the azimuth gamma data obtained during the drilling of the pilot hole and using the basic parameters of the pilot hole and formula (1), the apparent dip angle of the stratum near the designed landing point is determined to be α = 6.5°. The parameters of the landing point are shown in Fig. 12, and the deviation angle of the actual main borehole trajectory of the second well section at the landing point β should be controlled at around 83.5° to ensure that the drilling ratio along the coal seam of the third well section is achieved and to reduce the frequency of directional trajectory adjustment.

Figure 12
figure 12

Parameters of the landing site.

During the drilling of the third horizontal section of Well-Q, a combination of Two-dimensional resonance exploration results and azimuth gamma logging while drilling technology was used to guide rapid coal tracking during the drilling of three faults. The process for each fault was as follows:

F1 Fault: The logging curve in Fig. 13 indicates that the F1 fault caused the drilling track of the 1920–1976 m well section to be drilled out from the coal seam roof. Geological logging revealed that the rock debris returning out of the hole bottom contained a large amount of mudstone. Based on the Two-dimensional resonance exploration inversion (Fig. 9) and fault contour (Fig. 10), the coal seam was traced by drilling with deviation correction through the lowering of well deviation. The actual drilling track during the pursuit of coal process is shown in Fig. 14.

Figure 13
figure 13

Non-coal seam section azimuth gamma logging curve crossing fault F1.

Figure 14
figure 14

Actual drilling trajectory of fault F1 in pursuit coal.

F2 Fault: The logging curve in Fig. 15 shows that the F2 fault caused the drilling trajectory of the 2130–2183 m well section to be drilled out from the coal seam roof. Geological logging revealed that the rock debris returning out of the hole bottom contained a large amount of mudstone. Based on the Two-dimensional resonance exploration inversion (Fig. 9), the back fault block of F2 fault in the direction of drilling trajectory of F2 fault shows a tendency of coal seam incline, so directly using lowering deviation correction drilling to trace the coal seam is not feasible and increases the length of the non-coal seam section. Therefore, the coal seam was pursued by increasing well deviation and rectifying drilling. The actual drilling track during the pursuit of coal process is shown in Fig. 16.

Figure 15
figure 15

Non-coal seam section azimuth gamma logging curve crossing fault F2.

Figure 16
figure 16

Actual drilling trajectory of fault F2 in pursuit coal.

F3 Fault: The logging curve in Fig. 17 shows that the F3 fault caused the drilling trajectory of the 2315–2350 m well section to be drilled out from the coal seam roof floor. Geological logging revealed that the rock debris returning out of the hole bottom contained a large amount of carbonaceous mudstone. Using formula (1), the coal point well inclination angle was calculated as 96°. Based on the Two-dimensional resonance exploration inversion (Fig. 9) and fault contour (Fig. 10), the coal seam was pursued by slowly lowering the well inclination and correcting the deviation. The actual drilling track during the pursuit of coal process is shown in Fig. 18. The well inclination angle was 91° upon returning back to the coal seam, after which drilling along the coal seam was continued normally.

Figure 17
figure 17

Non-coal seam section azimuth gamma logging curve crossing fault F3.

Figure 18
figure 18

Actual drilling trajectory of fault F3 in pursuit coal.



Source link